Mapping interhemispheric connectivity using functional MRI after transcranial magnetic stimulation on the human auditory cortex
نویسندگان
چکیده
Interhemispheric interactions can be important in transcranial magnetic stimulation (TMS) studies investigating motor or cognitive brain functions, but their role in predicting the outcome of TMS is not clear. Previously, we showed that individual differences in interhemispheric functional connectivity of auditory cortices influenced the behavioral effect of repetitive TMS (rTMS) applied over auditory cortex in a melody discrimination task. Here, functional magnetic resonance imaging (fMRI) scanning with the same task was carried out before and after rTMS applied over auditory cortex to determine how rTMS affects both behavior and neural function. After rTMS applied over the right auditory cortex, we found mean increases in activation in the contralateral auditory cortex. The degree and direction of modulation of the fMRI response were correlated with behavior: the higher the contralateral increase after stimulation, the faster the response times, whereas individuals with reduced contralateral activity showed no behavioral facilitation. We also found that higher interhemispheric connectivity between auditory cortices before TMS was associated with faster response times. This study shows directly the role of functional connectivity in the auditory network on TMS-induced modulation, which could explain its often variable effects on behavior. Combined TMS and fMRI is particularly useful to promote plastic reorganization in the auditory network and has implications for research on auditory-related disorders.
منابع مشابه
Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملHuman Brain Mapping Using Structural and Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation
Modern brain research methods such as magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have provided essential information of the structure and function of the human brain. However, to be practical in clinics, they need to be optimized for the clinical environment and to be easy to use and robust. At the same time, the re...
متن کاملInterhemispheric Connectivity Influences the Degree of Modulation of TMS-Induced Effects during Auditory Processing
Repetitive transcranial magnetic stimulation (rTMS) has been shown to interfere with many components of language processing, including semantic, syntactic, and phonologic. However, not much is known about its effects on nonlinguistic auditory processing, especially its action on Heschl's gyrus (HG). We aimed to investigate the behavioral and neural basis of rTMS during a melody processing task,...
متن کاملHuman motor corpus callosum: topography, somatotopy, and link between microstructure and function.
The corpus callosum (CC) is the principal white matter fiber bundle connecting neocortical areas of the two hemispheres. Although an object of extensive research, important details about the anatomical and functional organization of the human CC are still largely unknown. Here we focused on the callosal motor fibers (CMFs) that connect the primary motor cortices (M1) of the two hemispheres. Top...
متن کاملMapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 79 شماره
صفحات -
تاریخ انتشار 2013